A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover
نویسندگان
چکیده
Spectral unmixing of urban land cover relies on representative endmember libraries. For repeated mapping of multiple cities, the use of a generic spectral library, capturing the vast spectral variability of urban areas, would constitute a more operational alternative to the tedious development of image-specific libraries prior to mapping. The size and heterogeneity of such a generic library requires an efficient pruning technique to extract site-specific spectral libraries. We propose the “Automated MUsic and spectral Separability based Endmember Selection technique” (AMUSES), which selects endmember subsets with respect to the image to be processed, while accounting for internal redundancy. Experiments on simulated hyperspectral data from Brussels (Belgium) showed that AMUSES selects more relevant endmembers compared to the conventional Iterative Endmember Selection (IES) approach. This ultimately improved mapping results (kappa increased from 0.71 to 0.83). Experiments on real HyMap data from Berlin (Germany) using a combination of libraries from different cities underlined the potential of AMUSES for handling libraries with increasing levels of generality (RMSE decreased from 0.18 to 0.15, while only using 55% of the number of spectra compared to IES). Our findings contribute to the value of generic spectral databases in the development of efficient urban mapping workflows.
منابع مشابه
Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملIncorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis
As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery...
متن کاملHyperspectral Unmixing via Low-Rank Representation with Space Consistency Constraint and Spectral Library Pruning
Spectral unmixing is a popular technique for hyperspectral data interpretation. It focuses on estimating the abundance of pure spectral signature (called as endmembers) in each observed image signature. However, the identification of the endmembers in the original hyperspectral data becomes a challenge due to the lack of pure pixels in the scenes and the difficulty in estimating the number of e...
متن کاملتجزیه ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه ی طیفی هرس شده
Spectral unmixing of hyperspectral images is one of the most important research fields in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...
متن کاملUrban Land-Cover Change Analysis in Central Puget Sound
A methodology was developed to interpret and assess land cover change between 1991 and 1999 in Central Puget Sound, Washington at several scales (landscape, sub-basins, and 90 m grid window) relevant to regional and local decision makers. Land cover data are derived from USGS Landsat (Thematic Mapper and Enhanced Thematic Mapper ) images of Central Puget Sound. Landsat data were registered, int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017